On Supra I-open Sets and Supra I-continuous functions

S.SEKAR and P.JAYAKUMAR

Abstract— In this paper we introduce and investigate a new class of sets and functions between topological spaces called supra I-open sets and supra I-continuous functions respectively.

Keywords— Supra I-open set; Supra I-continuous functions; Supra topological spaces.

1 INTRODUCTION

IN 1983, A.S.Mashhour et al. [6] introduced the supra topological spaces and studied S-continuous maps and

S*-continuous maps. In 1987, M.E.Abd El- Monsef et al. [3] introduced the fuzzy supra topological spaces and studied fuzzy supra-continuous functions. This class of sets contained in the class of β -open sets [1] and contains all semiopen sets [2] and all pre-open sets [6]. In 2008, R.Devi et al [5] introduced and studies a class of sets and maps between topological spaces called supra α -open and supra s α -continuous maps, respectively. Now, we introduce the concept of supra I-open set, and supra I-continuous functions and investigate several properties for these classes of maps.

1.1 Definition

A sub family T^{*} of X is said to be a supra topology on X if, (i) $x, \phi \in \tau^*$, (ii) if $A_i \in \tau^*$, $\forall i \in j$, then $UA_i \in \tau^*$

 (x, τ^*) is called supra topological space. The elements of τ^* are called supra open sets in (x, τ^*) and complements of a supra open set is called a supra closed set.

1.2 Definition

The supra closure 0 a set A is denoted by supra cl(A) and defined as supra cl(A) = $\cap \{B : B \text{ is a supra closed and } A \subseteq B\}$. The supra interior of a set A is denoted by Supra int(A), and defined as supra int(A) = $\cup \{B : B \text{ is a } \tau \text{ supra open and } A \supseteq B\}$.

1.3 Definition

Let (x, τ) be a topological space and τ^* be a supra topology on x. We call τ^* a supra topology associated with τ if $\tau \subset \tau^*$.

2 SUPRA I-OPEN SETS

In this section, we introduce a new class of generalized open sets called supra I-open sets and study some of their properties.

2.1 Definition

Let (x, τ^*) be a supra topological space. A set A is called supra I-open set if A \subseteq Supra int (supra cl(A)). The complement of a supra I-open set is called a supra I-closed set.

2.2 Theorem

Every supra open set is supra I-open set.

Proof.

Let A be a supra open set in (x, τ^*) since, A \subseteq supra cl(A), then supra int(A) \subseteq supra int (supra cl(supra int (A))). Hence

 $A \subseteq$ supra int (supra cl (supra int (A))).

The converse of the above theorem need not be true as shown by the following examples.

2.3 Example

Let (x, τ^*) be a supra topological space. Where $X = \{a, b, c\}$ and $\tau^* = \{x, \phi, \{a\}, \{a, b\}, \{b, c\}\}$. Here, $\{a, c\}$ is a supra I-open set, but it is not a supra open.

2.4 Theorem

In [3], the author proved that every supra I-open set is supra semi-open. (Instead of example 3.2 [3]) shows the converse need not be true.

2.5 Example

Let (x, τ^*) be a supra topological space. Where $X = \{a, b, c, d\}$ and $\tau^* = \{x, \phi, \{a\}, \{b\}, \{a, b\}\}$. Here $\{b, c\}$ is a supra semiopen set, but not a supra I-open.

2.6 Theorem

USER © 2012 http://www.ijser.org

Department of Mathematics, Government Arts College (Autonomous), Cherry Road, Salem – 636 007, Tamil Nadu, India. Email: sekar nitt@rediffmail.com

Department of Mathematics, Paavai Engineering College, Pachal – 637 018, Tamil Nadu, India. Email: jaijai192006@gmail.com

(i) Finite union of Supra I-open sets is always a supra I-open.

(ii) Finite intersection of supra I-open sets may fail to be a supra I-open.

Proof:

(i) Let A and B be two supra I-open sets. The A \subseteq supra int (supra cl(supra int (A))) and B \subseteq supra int(supra Cl(supra int (B))). Then A \cup B \subseteq supra int (supra cl(supra int (A \cup B))).

Therefore $A \cup B$ is supra I-open set.

(ii) Let (x, τ^*) be a supra topological space. Where $X = \{a, b, c, d\}$ and $\tau^* = \{x, \phi, \{a, b\}, \{b, c\}\}$. Here $\{a, b\}, \{b, c\}$ are $\{a, b\}, \{b, c\}$ are supra I-open sets but their intersection is a not supra I-open set.

2.7 Theorem

(i) Arbitrary intersection of supra I-closed sets is always supra I-closed.

(ii) Finite union of supra I-closed set may fail to be supra I-closed set.

Proof.

(i) This follows immediately from theorem 2.6.

(ii) Let (x, τ^*) be a supra topological space where $x = \{a, b, c, d\}$ and $\tau^* = \{x, \phi, \{a, b\}, \{b, c\}\}$ Here $\{c, d\}, \{a, d\}$ and supra I-closed sets, but their union is not a supra I-closed set.

2.8 Definition

The supra I-closure of a set A is denote by supra I cl(A) and defined as, supra I cl(A) = \cap {B : B is a supra I-closed set and A \subseteq B}.

The supra I-interior of a set is denoted by supra I int(A), and defined as, supra I int(A) = \cup {B : B is a supra I-open set and A \supseteq B}.

2.9 Remarks

It is clear that supra I int(A) is a supra I-open set and supra I cl(A) is a supra I-closed set.

2.10 Theorem

- (i) X-supra I int(A) = supra I cl(X-A)
- (ii) X-supra I cl(A) = supra I int (X-A)

Proof. Obvious.

2.11 Theorem

- (i) Supra I int(A) \cup supra I int(B) = supra I int(A \cup B)
- (ii) Supra I cl(A) \cap supra I cl(B) = supra I cl (A \cap B)

Proof. Obvious

3 SUPRA I-CONTINUOUS FUNCTIONS

In this section, we introduce a new type of continuous functions called a supra I-continuous function and obtain some of their properties and characterizations.

3.1 Definition

Let (X, τ) and (Y, σ) be two topological space and τ^* be associated supra topology with τ . A function $f: (X, Z), \rightarrow (Y, \sigma)$ is called a supra I-continuous functions if the inverse image of each open set in y is a supra I-open set in x.

3.2 Theorem

Every continuous function is supra I-continuous functions.

Proof.

Let $f: (X, \tau) \to (Y, \sigma)$ be a continuous function. Therefore $f^{-1}(A)$ is a open set in x for each open set A in Y. But, τ^* is associated with τ . That is $\tau \subset \tau^*$. This implies $f^{-1}(A)$ is a supra open in x. since supra open is supra I-open this implies $f^{-1}(A)$ is supra I-open in X. Hence *f* is a I continuous functions.

The converse of the above theorem is not true as shown in the following example.

3.3 Example

Let $X = \{a, b, c\}$ and $\tau = \{x, \phi, \{a, b\}\}$ be a topology on X. The supra topology τ^* is defined as follows, $\tau^* = \{x, \phi, \{a\}, \{a, b\}\}$. Let $f : (X, \tau) \rightarrow (X, \tau)$ be a function defined as follows f(a) = a, f(b) = c, f(c) = b. The inverse image of the open set $\{a, b\}$ is $\{a, c\}$ which is not an open set but if a supra I-open. Then f is supra I-continuous but it is not continuous.

3.4 Theorem

Let (X, τ) and (Y, σ) be two topological spaces. Let *f* be a function from X

into Y. Let τ^* be associated supra topology with τ . Then the following are equivalent.

- a) *f* is I-continuous.
- b) The inverse image of closed set in Y in supra I-closed set in X.
- c) Supra I $cl(f^{1}(A)) \subseteq f^{1}(cl(A))$ for every set A in Y.
- d) $f(\text{supra I cl}(A)) \subseteq cl(f(A))$ for every set A in X.
- e) $f^1(int(B)) \subseteq supra I int(f^1(B))$ for every set B in Y.

Proof.

(a) \Rightarrow (b) : Let A be a closed set in Y, then Y-A is open in Y. Thus,

 f^1 (X-A) = X – f^1 (A) in supra I-open in X. It follows that f^1 (A) in a supra I-closed set of X.

(b) \Rightarrow (c) : Let A be any subset of X. Since cl(A) is closed in Y, then it follows that $f^1(cl(A))$ is supra I-closed in X. Therefore $f^1(cl(A)) =$ supra I cl($f^1(cl(A)) \supseteq$ supra I cl($f^1(A)$). (c) \Rightarrow (d) : Let A be any subset of X. By (c) we obtain, f^1 (cl (f(A))) \supseteq supra I cl(f^1 (A))) \supseteq supra I cl(A) and hence *f*(supra I cl(A)) \subseteq cl(*f*(A)).

(d) \Rightarrow (e) : Let f (supra I cl(A)) \subseteq cl (f(A)) for every set A in X. Then supra I cl (A) \subseteq f^1 (cl(f(A))), X-supra I cl(A) \supseteq X – f^1 (cl (f(A))) and supra

I int $(X - A) \supseteq f^1$ (int (y-f(A))). Then supra I int $(f^1(B)) \supseteq f^1$ (int (B)). Therefore f^1 (int(B)) \subseteq supra I int $(f^1(B))$, for every B in Y.

(e) \Rightarrow (a) : Let A be a open set in Y. Therefore f^1 (int (A)) \subseteq supra

I int (f^1 (A)), hence f^1 (A) \subseteq supra I int (f^1 (A)). But by other hand we know that, supra I int(f^1 (A)) $\subseteq f^1$ (A). Then f^1 (A) = supra I int (f^1 (A)). Therefore, f^1 (A) is a supra I-open set.

3.5 Theorem

If a map $f : (X, \tau) \to (Y, \sigma)$ is supra I-continuous and $g : (Y, \sigma) \to (Z, \gamma)$ is continuous map, then $g.f : (X, \tau) \to (Z, \gamma)$ is supra I-continuous.

Proof. Obvious.

3.6 Theorem

Let (x, τ) and (y, σ) be topological space. Let τ^* and σ^* be associated supra topologies with τ and σ respectively. Then *f* : $(x, \tau) \rightarrow (y, \sigma)$ is supra I-continuous map, if one of the following holds.

- (1) f^1 (supra I Int(B)) \subseteq int (f^1 (B) for every set B in Y.
- (2) $\operatorname{cl}(f^1(B)) \subseteq f^1(\operatorname{supra} \operatorname{I} \operatorname{cl}(B))$ for every set B in Y.
- (3) $f(cl(A)) \subseteq supra-I cl(f(A))$ for any set A in X.

Proof.

Let B be any open set of Y, if condition (1) is satisfied, then f^1 (supra I int (B)) \subseteq int (f^1 (B)). We get f^1 (B) \subseteq int (f^1 (B)). Therefore f^1 (B) is supra open set. Every supra open set is supra I-open set. Hence *f* is a supra I-continuous map.

If condition (2) is satisfied, then we can easily prove that f is a supra I-continuous map.

If condition (3) is satisfied and B is any open set of Y. then $f^{1}(B)$ is a set in

X and $f(cl(f^1 (B))) \subseteq$ supra I $cl(f(f^1 (B)))$. This implies $f(cl (f^1 (B))) \subseteq$ supra I cl(A). This is nothing but conditions (2). Hence *f* is a supra I-continuous map.

REFERENCES

- Abl El-Monsef, M.E., El-Deeb S.N., Mahmoud, R.A.: β-open sets and β-continuous mapping. Bull. Fac. Sci. Assint Univ., 12, 77-90, 1983.
- [2] Levine, N.: Semi-open sets and semi continuity in topological spaces. Amer. Math. Monthly, 70, 36-41, 1963.

- [3] Abl El-Monsef, M.E., Ramadan, A.E.: On fuzzy supra topological space. Indian J. Pure and Appl. Math. 4 (18), 322-329,1987.
- [4] Sayed, O.R., Takashi Noiri.: On supra b-open set and supra bcontinuity on topological spaces. European Journal of pure and applied Mathematics, 3(2) 295 –302, 2010.
- [5] Devi, R., Sampathkumar, S., Caldas, M.: On supra α open sets and sα continuous functions. General Mathematics,16 (2), 77-84,2008.
- [6] Mash hour, A.S., Allam, A.A., Mahmoud F.S., Khedr, F.H.: On supra topological. Indian J. Pure and Appl. Math. 4(14), 502-510,1983.